

Unit 13 - Electromagnetic Induction

This unit explains how electrical energy can be generated without a battery, simply by moving wires in magnetic fields. You'll learn how **induced current** works, how **alternators** and **dynamos** generate electricity, and the differences between **AC and DC**. We explore how this applies to real-life systems like microphones, loudspeakers, and the National Grid. You'll also understand how **transformers** work and why stepping voltage up and down is essential for efficient power transmission.

Inducing Current

When a **conductor (wire)** moves through a **magnetic field**, a **potential difference** is generated. This can cause a **current to flow** if the wire is part of a complete circuit.

Key Ideas:

- Moving a wire in a magnetic field causes electrons to shift → potential difference
- If connected in a circuit → current flows
- The new current produces its own magnetic field in the **opposite direction** to oppose the change (Lenz's Law)

Generating Electricity

Small-Scale Generation

- Spin a coil between two magnets → small current (measured with a sensitive ammeter)
- Move a wire manually through a magnetic field → deflection seen on an ammeter

Large-Scale Generation

Process	Description
Steam Production	Water heated by fossil fuels or nuclear energy
Turbine Rotation	Steam pressure spins turbine blades
Generator Action	Turbine connected to a coil in a magnetic field
Result	Spinning coil generates current in wires

Factors Affecting Current/Voltage Size:

- Number of wire coils
- Speed of rotation
- Strength of magnetic field

Alternators vs Dynamos

Alternator

- A coil spins in a magnetic field
- Every half-turn, the current switches direction
- Produces Alternating Current (AC)
- Use Fleming's Left Hand Rule to predict current direction

Dynamo

- Similar to an alternator, but with a **commutator**:
 - A split metal ring that keeps the current output in the same direction
 - Every half turn, it switches contact, ensuring the **Direct Current (DC)** output remains positive

Feature	Alternator	Dynamo
Output Type	AC	DC
Current Flips	Yes, naturally	No, commutator corrects it
Uses	Power stations	Bicycle lights, old radios

Microphones & Loudspeakers

Microphones (Input Device)

- Sound waves move a coil placed in a magnetic field
- This movement induces a current
- Current is proportional to pressure variations

Loudspeakers (Output Device)

- The **induced current** flows into a coil
- The coil interacts with a fixed magnet
- This makes the coil (and the attached cone) move
- Movement creates sound waves

Transformers

Transformers use electromagnetic induction to change the potential difference (voltage).

How They Work:

- AC current in primary coil → changing magnetic field
- This field cuts through the secondary coil
- Induces an AC voltage in the secondary coil

⚠ DC doesn't work in transformers (no changing field → no induction)

Types of Transformers:

Transformer Type	Coils	Effect on Voltage
Step-up	More coils on secondary	Increases voltage
Step-down	Fewer coils on secondary	Decreases voltage

Transformer Equation:

$$\frac{N_{\rm primary}}{N_{\rm secondary}} = \frac{V_{\rm primary}}{V_{\rm secondary}}$$

Where:

- N = number of turns (coils)
- V= potential difference (voltage)

▲ Assumes 100% efficiency unless told otherwise.

The National Grid

A system that transfers energy from power stations to homes and businesses.

Why High Voltage?

- Power = Current × Voltage (P = IV)
- To reduce energy loss:
 - Increase voltage → reduce current
 - Lower current = less heat loss in cables
- High voltage = efficient transmission
- ⚠ High voltage = dangerous, so step it down near towns

Stage	Voltage Change	Purpose
Power Station	Voltage increased (step- up)	Efficient long-distance travel
Towns/Homes	Voltage reduced (step- down)	Safe for domestic use

Power Balance Equation:

$$V_{
m primary} imes I_{
m primary} = V_{
m secondary} imes I_{
m secondary}$$

www.physics-tutor.online

